

INFLUENCE OF GROWTH TEMPERATURE ON THE PRODUCTION OF BACTERIOCINS BY *Lactococcus* spp.

Stefano MORANDI¹, Ivano DE NONI², Milda STUKNYTĖ³, Milena BRASCA^{1*}

¹ National Research Council, Institute of Sciences of Food Production, via Celoria 2, 20133, Milan, Italy
 ² University of Milan, Department of Food Environmental and Nutritional Sciences, via Celoria 2, 20133, Milan, Italy
 ³ University of Milan, Unitech COSPECT, via Golgi 19, 20133, Milan, Italy

Lactococcus spp. can produce bacteriocins, mainly nisins, belonging to the lantibiotics group. The use of nisin A as a food preservative is ruled down by EU. Nisin A exerts antimicrobial activity against Gram-positive bacteria, pathogens such as *Listeria monocytogenes* and *Staphylococcus aureus*, and spore forming bacteria (i.e., *Bacillus* and *Clostridium*). Therefore, the utilization of bacteriocin producer strains in dairy may positively impact cheesemaking and quality and safety of cheeses.

In this study, four strains of *Lc. lactis* and one strain of *Lc. cremoris* were considered. The strains harbored Nisin A (*Lc. cremoris*) or Z (*Lc. lactis*) genes. One *Lc. lactis* strain (VC106) also harbored Lactococcins B and Lacticin 481 structural genes. All the strains were screened for their ability to produce bacteriocins at the optimal growth temperature (30 °C) and at temperature **resembling those used in cheese-making** (18-45 °C) and **ripening** (8 °C) of semi-cooked cheese.

METHODS

Strains considered: *Lc. cremoris* FT27

Lc. lactis N16 Lc. lactis N26 Lc. lactis SV77 Lc. lactis VC106 Clostridium tyrobutyricum (10 ceppi)

Bacteriocins production: Lactococcus spp. inocula: 1 % w/w

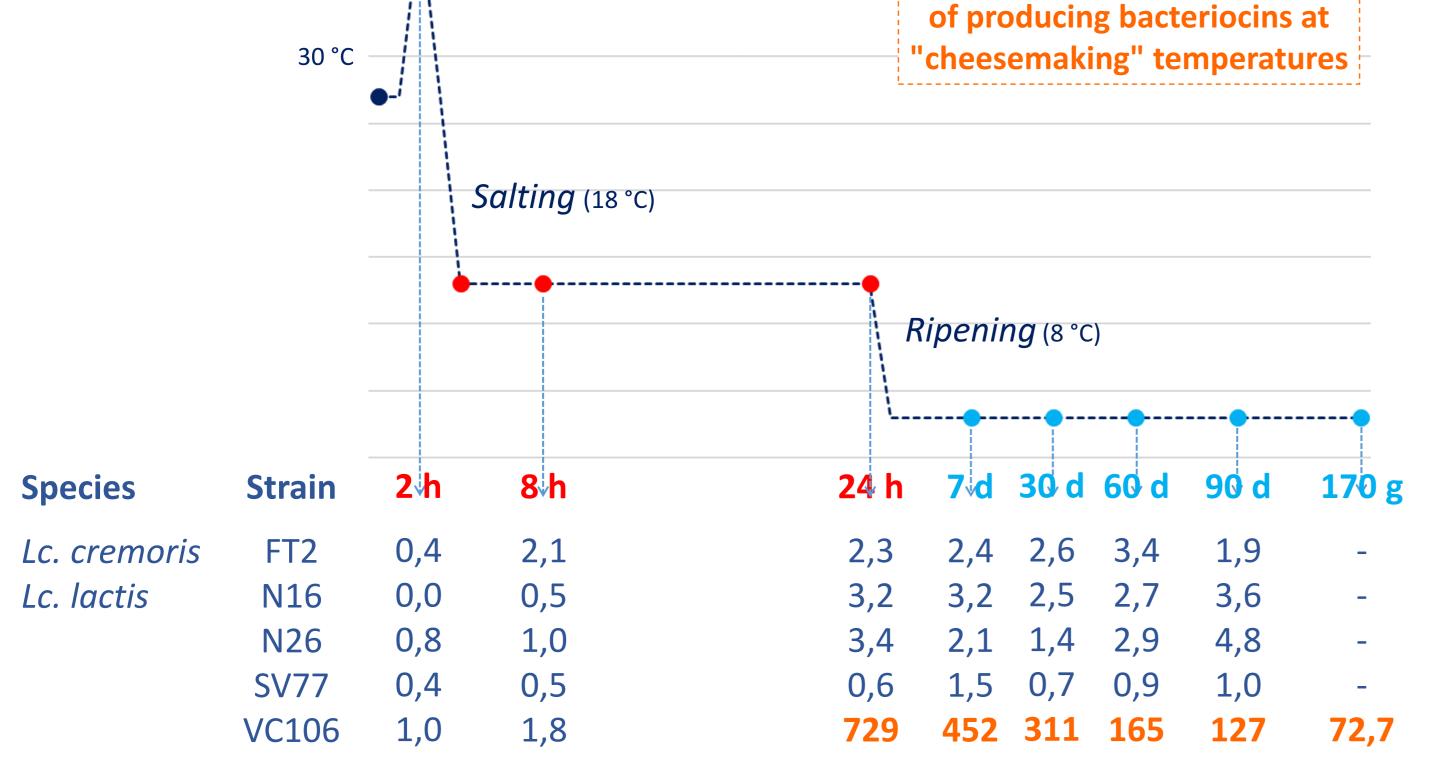
Growth substrate: MRS broth + Tween 80 (0.2% w Fermentation: MiniBio 500 (Applikon Biotechnolo Optimal growth temperature: 30 °C Cheese-making temperatures: 30 °C x 85' 45 °C x 15' (cooking) 18 °C x 24 h (salting) 8 °C x 170 days (ripening)

Nisin determination: Pongtharangkul & Demirci (2004); Murat & Hakkı (2021) Screening of bacteriocin genes: Ghrairi et al. (2004); Dal Bello et al. (2010) Nisin MIC assays against *Cl. tyrobutyricum* strains: Morandi et al. (2019)

BACTERIOCINS PRODUCTION BY *Lactococcus spp*. STRAINS AT TEMPERATURES RESEMBLING THOSE USED IN THE CHEESE-MAKING AND RIPENING (DATA EXPRESSED AS IU/ML)

Cooking (45 °C)
Bacteriocins producti
Only VC106 strain was capable

SCREENING OF BACTERIOCIN GENES AND THEIR PRODUCTION AT *LACTOCOCCUS* SPP. AT OPTIMAL GROWTH TEMPERATURE (30 °C)


Species	Strain	Genes	Batteriocins (IU/mL)
Lc. cremoris	FT27	nisA	610
Lc. lactis	N16	nisZ	1.628
	N26	nisZ	227
	SV77	nisZ	1.250
	VC106	nisZ, lct481, lcnB	858

Nisin production was strain dependent and at the optimal growth temperature a great variability was observed among the biotypes (from 227 to 1.628 IU/mL). All strains harboured the gene coding for nisin production (nisin A in *Lc. cremoris* and nisin Z in all *Lc. lactis* strains); VC106 strains shows genes coding for lacticin 481 (*lct481*) and lactococcin B (*lcnB*) production.

MINIMUM INHIBITORY CONCENTRATION (MIC) OF DI NISIN AGAINST THE *Cl. tyrobutyricum* SPORES PRODUCED BY STRAINS ISOLATED FROM DAIRY PRODUCTS

Species	Strain	MIC (IU/mL)	VC106 protection
Cl. tyrobytyricum	CL15b	28	170 days
	CL10	112	90 days

CONCLUSIONS _

These results highlight the need to better understand the bacteriocins production under real cheese-making and ripening conditions for using *Lc. lactis* and *Lc. cremoris* as bioprotective starter cultures.

CLIO		Judys
CL12	112	90 days
CL1	112	90 days
CL2	112	90 days
CL11	112	90 days
CL29	112	90 days
CL9 CL167 CL6a	225 225 225	30 days 30 days 30 days

Nisin MIC, evaluated on *Cl. tyrobutyricum* spores, ranged from 28 and 225 IU/mL. These values suggest that the amount of bacteriocin produced by VC106, was able to control the spore germination for up to 170 days at low temperatures.

REFERENCES

Dal Bello et al. (2010) LWT, 43,1151-1159; **Ghrairi** et al. (2004) J. Appl. Microbiol. 97, 621–628; **Morandi** et al. (2019) Food Cont., 96, 499-507; **Murat & Hakkı** (2021) LWT, 150, 112065; **Pongtharangkul & Demirci** (2004) Appl. Microbiol. Biotechnol., 65, 268-272

Funder: Project funded under the National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.3 - Call for tender No. 341 of 15 March 2022 of Italian Ministry of University and Research funded by the European Union – NextGenerationEU;

Award Number: Project code PE00000003, Concession Decree No. 1550 of 11 October 2022 adopted by the Italian Ministry of University and Research, CUP XXXX, Project title "ON Foods - Research and innovation network on food and nutrition Sustainability, Safety and Security – Working ON Foods".

