

INRAQ

Liberté Égalité Fraternité

Suitability of organic raw milk for cheesemaking according to seasons

<u>Solange Buchin</u>¹, Thomas Puech², Odile Rolet-Répécaud¹, Pascal Barbet¹, Fabrice Petitpas¹, Céline Arnould¹, Marie-Odile Coquillard¹, Eric Beuvier¹

 INRAE, URTAL, 39800 F-Poligny
 INRAE, ASTER, 88500 F-Mirecourt solange.buchin@inrae.fr

— Material and methods —

Artisanal cheesemaking may be a good way to enhance added value on farms, particularly for dairy cattle organic farms. However, these systems, in particular grazing systems, are sensitive to weather conditions for forage production, a key factor in milk quality.

ntroduction

 \rightarrow The aim of this work was to study

- 1. the variations of milk according to the production conditions, in particular climate hazards,
- 2. the consequences on cheesemaking properties (laboratory cheese yield and coagulation ability) and cheese quality.

5 periods (seasons) = May (1), Early-July (2), Mid-July (3), November (4), February (5) 3 replicates at each period except (2) = climate hazard (heat-wave until 36°C), only once

Main results

Variance Analysis on milk characteristics (interactions Season x Milk)

	1 x S	1 x M	2 x S	2 x M	3 x S	3 x M	4 x S	4 x M	5 x S	5 x M	P Season	P Milk	P SxM
Proteins g/L	36.3 b	35.6 bcd	34.5 cd	33.0 e	35.1 bcd	34.2 d	39.1 a	35.1 bcd	36.0 bc	35.0 bcd	***	***	***
Fat g/L	42.7 cde	38.6 f	45.0 b	41.9 e	44.0 bcd	41.4 e	51.6 a	42.2 de	44.5 bc	41.0 e	***	***	***
Ca g/L	1.20 b	1.17 b	1.21 b	1.19 b	1.16 b	1.17 b	1.30 a	1.21 b	1.22 b	1.19 b	***	*	NS
Yield/DM %	68.4 bcd	64.9 e	68.2 bcd	65.9 de	69.3 bc	66.3 cde	76.6 a	68.9 bcd	70.7 b	66.5 cde	***	***	**
R min	16.4 cd	15.3 d	20.2 a	15.4 d	17.8 bc	16.4 cd	18.9 ab	17.7 bc	16.2 cd	15.3 d	***	***	*
K20 min	21.3 cd	19.6 d	28.7 a	22.0 cd	25.1 b	22.7 c	23.5 bc	22.7 c	21.1 cd	19.6 d	***	***	**
K20/R	1.30 b	1.29 b	1.42 a	1.43 a	1.41 a	1.38 a	1.24 b	1.28 b	1.31 b	1.29 b	***	NS	NS
UFA %	34.2 b	34.9 b	36.2 ab	37.9 a	36.3 ab	38.6 a	38.4 a	37.9 a	31.0 c	30.9 c	***	NS	NS

Principal Components Analysis on cheese volatiles (in black)

Supplementary variables : microbial populations (in green), chemical variables (in violet), sensory descriptorss (in red)

Raclette-like

Gruyère-gras-like

Variables (axes F1 et F2 : 50,38 %)

F1 (34,88 %)

Variables (axes F1 et F2 : 47,70 %)

Seasons: 1=May, 2=Early-July heat-wave, 3=Mid-July, 4=Nov, 5=Feb Milks: S=Single, M=Mix

Milks particularly rich in fat, especially once-a-day milked S milks

Protein, fat, Ca contents and yield impacted by Season and Milk (higher with S milk in November) Technological quality affected mostly by Season then by Milk

 \rightarrow coagulation time (R) and firming time (K20) impaired by heat-wave in S milk, firming speed (K20/R) impaired by summer conditions (2 & 3)

As expected, fatty acids more unsaturated (UFA) with grass-based feed (July and November)

Volatile compounds of cheeses

Raclette: Milk more discriminant than season, seasons more different with S milk
 With S milk, effect of Early- (climate hazard) and Mid-July: less volatile compounds
 Gruyère-gras: Less volatile compounds affected by Season or Milk than in Raclette

Most effect = Season, similar composition according to Milks As in Raclette, effect of Early- (climate hazard) and Mid-July

 \rightarrow less volatiles, but for both Milks

Conclusions

Organic milks showed a high compositional and technological variability according to seasons. Variability was higher with a single milk compared to a mix

→ the technical quality was more impaired by the heat-wave in single milk than in mix milk.
 In the present conditions, Gruyère-gras technology was more robust than Raclette technology
 → it showed less variations in volatile composition according to studied factors.
 With Raclette, mix of milk showed more robustness than single milk
 → less variations in cheese volatile composition

Funded By INRAE Transform & Act research depts

The 13th European Farmhouse and Artisan Cheese & Dairy Meeting 2023 Grangeneuve, Suisse 11 – 13 Octobre 2023 ASTER 662 Avenue Louis Buffet 88500 Mirecourt France Tel: +33(0)3 29 38 55 00 www6.nancy.inrae.fr/sad-aster

URTAL Rue de Versailles 39800 Poligny France Tel: + 33 (0)3 63 57 20 00 www.inrae.fr/centres/bourgogne-franche-comte

https://minifromagerie-poligny.hub.inrae.fr

F1 (25,30 %)

Variables: Bold: volatiles affected by season, *Italic*: volatiles affected by milk
-C2, C3, iC4, 2MC4, 3MC4: acetic, propionic, isobutyric, 2methylbutyric, 3methylbutyric acids
-E-C2, E-C4, E-C6: ethyl esters of acetic, butyric, hexanoic acids
-CDS, DMS, DMDS, DMTS: sulfur compounds (C: carbon, D: di, T: tri, M: methyl, S: sulfide), Mbenz: methylbenzene
-FDM: fat/dry matter, MNFS: moisture/non fat substance, WSN: water soluble N, PTASN: phosphotungstic acid soluble N
-LbT: thermophilic lactobacilli, ST: Streptococcus thermophilus, FHL: facultatively heterofermentative lactobacilli, PAB: propionic acid bacteria, Lc: lactococci, ENT: enterococci, Ln: leuconostocs
-FI Q: flavour quality, L: lactic, V: vegetal
Observations: S: single milk, M: mix milk, 1-2-3-4-5: seasons