


University of Veterinary Medicine Budapest, Institute of Food Chain Science, Department of Food Hygiene E-mail: darnay.livia@univet.hu lill_austheim@hotmail.com

INTRODUCTION

Several factors may influence the levels of biogenic amines (BAs) produced in cheese, including the presence of microorganisms possessing amino acid decarboxylating activity, the availability of free amino acids, pasteurization of milk, and ripening time and its conditions – temperature, pH, and NaCl concentration (Linares et al. 2012). Commonly detected BAs in cheese include histamine (HIS), tyramine (TYR), putrescine (PUT), cadaverine (CAD) (Benkerroum, 2016). While BAs may affect the quality of the food itself, the main concern with BAs in foods is their known physiologic and toxic properties – and hence their potential health hazard – if consumed in high enough concentrations. Foods containing low levels of BAs are normally not considered a health concern because the human gut will metabolize exogenous BAs by means of detoxifying enzymes: monoamine oxidase (MAO), diamine oxidase (DAO), and polyamine oxidase (PAO). If this protective mechanism is overwhelmed by excessive intake of BAs or by other means, it may lead to the accumulation of BAs within the body causing toxicological effects. (Ruiz-

Capillas & Herrero, 2019). In addition, one must take into consideration any additive and possibly synergistic effects, making the total level of BAs consumed more important than the level of any one single amine from a single source (Del Rio et al., 2017). Due to the number of factors that can affect the toxicity of BAs, toxicity levels are difficult to establish. Based on a limited number of studies, a no-observed-adverse-effect level (NOAEL) was set for histamine at 50 mg per meal for healthy individuals (EFSA, 2011). Famous European medium- and long-ripened cheese types have been evaluated based on the available research data.

1	2 3 BIOGENIC AMINE CONTENT (mg/kg) of SHORT-RIPENED (60 days) EUROPEAN CHEESES												123BIOGENIC AMINE CONTENT (mg/kg) of LONG-RIPENED (360 days) EUROPEAN CHEESES																
MILK	RAW MILK								THERMIZED or PASTEURIZED MILK							RAW MILK							THERMIZED or PASTEURIZED* MILK						
TYPE	HIS	TRY	PUT	CAD	TOTAL	CHEESE TYPE	REF	HIS	TRY	PUT	CAD	TOTAL	CHEESE TYPE	REF	TYPE	HIS	TRY	PUT	CAD	TOTAL	CHEESE TYPE	REF	HIS	TRY	PUT	CAD	TOTAL	CHEESE TYPE	REF
COW	28	38	19	32	299	Montasio PDO	Innoc~ cente	587	282	n.d.	1	1327	TomaPiem ontese	Innoccente 2002	COW	397	26	2	8	448	Voralberg~ er	Mayer, 2010	186	93	5	35	420	Appenzeller >180 days	Wechsler 2013
SHEEP	n.d.	52	23	104	208	Farmhous Pecorino	Manca 2015	21	66	6	36	206	Pecorino Sardo	Manca, 2015	SHEEP	167	188	194	334	1027	Farmhouse Pecorino	Manca, 2015	53	163	8	26	279	Pecorino Sardo	Manca, 2015
GOAT	28	245	74	178	n.d.	Spanish goat	Novella 2003	4	7	8	16	n.d.	Spanish goat	Novella 2004	GOAT	43	325	86	196	n.d.	Spanish goat 90 d.		6	11	15	33	n.d.	* Spanish goat 90 d.	Novella 2004

REFERENCES

- Benkerroum, N., 2016: Biogenic Amines in Dairy Products: Origin, Incidence, and Control Means. Comprehensive reviews in food science and food safety, 15. p. 801-826.
- Del Rio, B., Redruello, B., Linares, D. M., Ladero, V., Ruas-Madiedo, P., Fernandez, M., Martin, M. C., Alvarez, M. A., 2018: Spermine and spermidine are cytotoxic towards intestinal cell cultures, but are they a health hazard at concentrations found in foods? *Food Chemistry*, 269. p. 321-326.
- EFSA, 2011: Scientific Opinion on risk based control of biogenic amine formation in fermented foods. EFSA Journal 2011, 9(10):2393. 93 p. URL: https://efsa.onlinelibrary.wiley.com/doi/abs/10.2903/j.efsa.2011.2393. Accessed: 24 June 2020.
- Linares, D. M., del Río, B., Ladero, V., Martínez, N., Fernández, M., Martín, M. C., Álvarez, M.A., 2012: Factors influencing biogenic amines accumulation in dairy products. *Frontiers in Microbiology*, 3, 180.
- Novella-Rodríguez, S., Veciana-Nogués, M., Roig-Sagués, A., Trujillo-Mesa, A., & Vidal-Carou, M. (2004). Evaluation of biogenic amines and microbial counts throughout the ripening of goat cheeses from pasteurized and raw milk. *Journal of Dairy Research*, 71(2), 245-252.
- Manca, G., Porcu, A., Ru, A., Salaris, M., Franco, M.A., De Santis, E.P.L., 2015: Comparison of γ-aminobutyric acid and biogenic amine content of different types of ewe's milk cheese produced in Sardinia, Italy. *Italian Journal of Food Safety*, 4(2). p. 123-128.
- Mayer, H. K., Fiechter, G., Fischer, E., 2010: A new ultra-pressure liquid chromatography method for the determination of biogenic
- Espinosa-Pesqueira, D., Hernández-Herrero, M.M., Roig-Sagués, A.X., 2018: High Hydrostatic Pressure as a Tool to Reduce Formation of Biogenic Amines in Artisanal Spanish Cheeses. *Foods*, 7, 137. p. 88-103.
- Forzale, F., Giorgi, M., Pedonese, F., Nuvoloni, R., D'Ascenzi, C., Rindi, S., 2011: Contenuto Di Amine Biogene Nel "Pecorino Del Parco Di Migliarino-San Rossore". *Italian Journal of Food Safety*, 1. p. 149-153.
- Garmiene, G., Salomskiene, J., Stankiene, J., Januškeviciene, G., Zaborskiene, G., 2012: Changing of biogenic amine content in cheese during its manufacture. Milchwissenschaft, Vol 67(3). p. 308-311.
- Innocente, N., D'Agostin, P., 2002: Formation of Biogenic Amines in a Typical Semihard Italian Cheese. *Journal of Food Protection*, Vol. 65, No. 9. p.1498~1501.
- Komprda, T., Dohnal, V., Závodníková, R., 2008: Contents of some biologically active amines in a Czech blue-vein cheese. Czech J. Food Sci., 26. p. 428-440.

Farmhouse and

Artisan

Cheese & Dairy Producers

European Network

- amines in cheese. Journal of Chromatography A, 1217(19). p. 3251-3257.
- Marijan, A., Džaja, P., Bogdanović, T., Skoko, I., Cvetnić, Z., Dobranić, V., Zdolec, N., Satrović, E., Severin, K., 2014: Influence of ripening time on the amount of certain biogenic amines in rind and core of cow milk Livno cheese. *Mljekarstvo*, 64(3). p. 159-169.
- **Ruiz-Capillas**, C., Herrero, A., 2019: Impact of Biogenic Amines on Food Quality and Safety. Foods, 8(2), 62.
- Torracca, B., Nuvoloni, R., Ducci, M., Bacci, C., Pedonese, F., 2015: Biogenic Amines Content of Four Types of "Pecorino" Cheese Manufactured in Tuscany. *International Journal of Food Properties*, 18:5. p. 999-1005.
- Torracca, B., Pedonese, F., López, M.B., Turchi, B., Fratini, F., Nuvoloni, R., 2016: Effect of milk pasteurisation and of ripening in a cave on biogenic amine content and sensory properties of a pecorino cheese. *International Dairy Journal*, 61. p. 189-195.
- Wechsler, D., Winkler, H., Guggisberg, D., 2013: Optimierung der teigeigenschaften von Appenzeller mit festem und zu trockenem teig. ALP forum, 98. 20 p

11-13 October 2023 Grangeneuve-Fribourg, Switzerland

